22 METHYLPHENIDATE AND RITALINIC ACID QUANTITATION AND CONFIRMATION BY LCMS	Page 1 of 4		
Division of Forensic Science	Amendment Designator:		
TOXICOLOGY TECHNICAL PROCEDURES MANUAL	Effective Date: 31-March-2004		

22 METHYLPHENIDATE AND RITALINIC ACID QUANTITATION AND CONFIRMATION BY LCMS

22.1 Summary

22.1.1 Methylphenidate and its metabolite, ritalinic acid, are extracted from biological samples with an acetonitrile precipitation and analyzed by high performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS).

22.2 Specimen Requirements

22.2.1 One mL blood, urine, gastric or tissue homogenate.

22.3 Reagents and Standards

- 22.3.1 Ammonium acetate
- 22.3.2 Methanol
- 22.3.3 Acetonitrile
- 22.3.4 Methylphenidate, 1 mg/mL
- 22.3.5 Ritalinic acid (α-phenyl-2-piperidineacetic acid), 1 mg/mL
- 22.3.6 Phenacetin, 1 mg/mL

22.4 Solutions, Internal Standard, Calibrators and Controls

- 22.4.1 10 mM Ammonium Acetate: Weight 0.38 g ammonium acetate. Transfer to 500 mL volumetric flask and QS to volume with dH₂O
- 22.4.2 Working standard solution for methylphenidate and ritalinic acid (0.01 mg/mL)
 - 22.4.2.1 Pipet 100 μ l each of 1 mg/mL stock solutions of methylphenidate and ritalinic acid into a 10 mL volumetric flask and QS to volume with dH₂O
- 22.4.3 Quality Control (QC) standard solution of methylphenidate and ritalinic acid (0.01 mg/mL)
 - 22.4.3.1 Pipet 100 μl each of separate 1 mg/mL stock solutions of methylphenidate and ritalinic acid (different manufacturer, lot number or preparation than calibrators) into a 10 mL volumetric flask and QS to volume with dH₂O
- 22.4.4 Internal standard working solution
 - 22.4.4.1 0.1 mg/mL phenacetin: Pipet 1 mL of 1 mg/mL phenacetin stock solution into 10 mL volumetric flask and QS to volume with dH_2O
- 22.4.5 To prepare the calibration curve, pipet the following volumes of the 1 mg/mL and 0.01 mg/mL methylphenidate and ritalinic acid working standards into appropriately labeled 16 x 125 mm screw cap test tubes. Add 1 mL blank blood to obtain the final concentrations listed below.

22 METHYLPHENIDATE AND RITALINIC ACID QUANTITATION AND CONFIRMATION BY LCMS Division of Forensic Science TOXICOLOGY TECHNICAL PROCEDURES MANUAL Effective Date: 31-March-2004

Concentration of standard (mg/mL)	Amount of Standard (μL)	Final concentration of methylphenidate and ritalinic acid (mg/L)
1 mg/mL	10	10
1 mg/mL	5	5
0.01 mg/mL	200	2
0.01 mg/mL	100	1
0.01 mg/mL	50	0.5
0.01 mg/mL	10	0.1

22.4.6 Controls

- 22.4.6.1 Methylphenidate and Ritalinic Acid Control
 - 22.4.6.1.1 Pipet 100 μL of the 0.01 mg/mL methylphenidate/ritalinic acid QC solution into an appropriately labeled tube. Add 1 mL blank blood to achieve final concentration of 1 mg/L.
- 22.4.6.2 Negative control. Blood bank blood or equivalent determined not to contain methylphenidate or ritalinic acid.

22.5 Apparatus

- 22.5.1 Test tubes, 16 x 125 mm, round bottom, borosilicate glass with Teflon caps
- 22.5.2 Test tubes, 16 x 114 mm, glass centrifuge, conical bottom
- 22.5.3 Centrifuge capable of 2000-3000 rpm
- 22.5.4 Nitrogen evaporator with heating block
- 22.5.5 Vortex mixer
- 22.5.6 GC autosampler vials with inserts
- 22.5.7 LC/MS: Agilent Model 1100 LC-MSD
 - 22.5.7.1 LCMS Instrument Conditions. The following instrument conditions may be modified to adjust or improve separation and sensitivity.
 - 22.5.7.1.1 Elution conditions:
 - 22.5.7.1.1.1 Column: Agilent Hypersil BDS 125 mm X 3 mm, 3 μM particle size
 - 22.5.7.1.1.2 Column thermostat: 30° C
 - 22.5.7.1.1.3 Solvent A: 10 mM ammonium acetate in dH₂O
 - 22.5.7.1.1.4 Solvent B: methanol
 - 22.5.7.1.1.5 Isocratic elution, stop time: 6.00 min

Time	Solv. B	Flow
0.00	48	0.5

22.5.7.1.2 Spray Chamber

22 METHYLPHENIDATE AND RITALINIC ACID QUANTITATION AND CONFIRMATION BY LCMS

Page 3 of 4

Division of Forensic Science

Amendment Designator:

TOXICOLOGY TECHNICAL PROCEDURES MANUAL

Effective Date: 31-March-2004

22.5.7.1.2.1 Ionization Mode: Electrospray 22.5.7.1.2.2 Gas Temperature:350° C 22.5.7.1.2.3 Drying Gas (N₂): 12.0 L/min 22.5.7.1.2.4 Nebulizer pressure: 35 psig 22.5.7.1.2.5 Vcap (Positive): 3500 V

22.5.7.1.3 Selected Ion Monitoring (quantitation ions)

22.5.7.1.3.1 Polarity: Positive 22.5.7.1.3.2 Injection volume: 1 μL

Time	Group Name	SIM	Frag-	Gain	SIM	Actual
(min)		Ion	Mentor	EMV	Resol.	Dwell
0	Ritalinic acid	84	170	1.0	Low	352
		174	170		352	
		220	170		352	
2.3	Phenacetin	110	160	1.0	Low	529
		<u>180</u>	160		529	
3.5	Methylphenidate	84	170	1.0	Low	352
		174	170		352	
		<u>234</u>	170		352	

22.6 Procedure

- 22.6.1 Label clean 16 x 125 mm screw cap tubes appropriately with calibrators, controls and case sample IDs.
- 22.6.2 Prepare calibrators and controls.
- 22.6.3 Add 1 mL case specimens to the appropriately labeled tubes.
- 22.6.4 Add 50 μL 0.1 mg/mL phenacetin internal standard working solution to each tube.
- 22.6.5 Slowly, add dropwise 2 mL cold (freezer temperature) acetonitrile to each tube while vortexing. Continous vortexing, not mere mixing, is essential.
- 22.6.6 Vortex an additional 30 seconds.
- 22.6.7 Place tubes in freezer for at least 30 minutes to facilitate separation.
- 22.6.8 Centrifuge at approximately 2500 rpm for 15 minutes.
- 22.6.9 Transfer top (acetonitrile) layer to clean conical bottom tubes taking care not to transfer any lower layers.
- 22.6.10 Evaporate to dryness at approximately 50° C under nitrogen.
- 22.6.11 Reconstitute samples in 100 µL methanol. Vortex briefly. Transfer to GC microvials and inject on LCMS.

22.7 Calculation

22.7.1 Drug concentrations are calculated by linear regression analysis using the ChemStation software.

	22	METHYLPHENIDATE AND RITALINIC ACID	Page 4 of 4		
	QUANTITATION AND CONFIRMATION BY LCMS				
		Division of Forensic Science	Amendment Des	signator:	
	TOX	COLOGY TECHNICAL PROCEDURES MANUAL	Effective Date:	31-March-2004	
22.8	8 Quality Control and Reporting				
	22.8.1	See Toxicology Quality Guidelines			
22.9	Refere	nces			
	22.9.1	J Pearson and R Steiner, in-house development.			